E PIDEMIC POPULATION STRUCTURE OF MBL-PRODUCING Pseudomonas aeruginosa IN RUSSIA **C2-1499**

O.V. Shevchenko, M.V. Edelstein, and members of METALL Study Group*. * E.V. Safronova, City Clinical Diagnostic Laboratory, Lipetsk; N.A. Gordinskaya, Research Institute of Traumatology and Orthopedy, N. Novgorod; G.I. Nekhaeva, City Clinical Hospital N10, Voronezh; R.M. Khokhliavina, Regional Clinical Hospital, Tyumen; G.G. Bekker, Road Clinical Hospital, Novosibirsk; O.I. Kretchikova, IAC, Smolensk

INTRODUCTION

Previously, we described appearance of MBL-producing P. aeruginosa in Russia [1] and characterized genetic context of MBL-coding genes among these strains [2]. In this study, we further investigated the genetic relatedness between recent and previously isolated MBL-producing strains of *P. aeruginosa* in Russia.

MATERIALS AND METHODS

• A total of 103 MBL-producing *P. aeruginosa* strains were studied:

- Isolates were collected in 17 hospitals of 8 geographically distant Russian cities as part of the prospective national surveillance study "METALL" in 2005-2007 (Figure 2).

- MBL phenotype was determined by EDTA double-disk synergy test [3].

The presence of bla_{IMP} and bla_{VIM} genes was investigated by multiplex real-time PCR with consensus primers (Table 1).

- 25-µl PCR mixtures contained: 0.5 µM of each primer, 200µM of each dNTP, 1.5 mM MgCl₂, 1.5U of Taq-F DNA-polymerase (AmpliSens, Russia), 1 µl of SYBR Green I (SBG I; 1:1000 dilution in DMSO) and 3 µl of template DNA prepared by boiling of 3-5 colonies in TE buffer.

- Thermal cycling was performed on a Rotor-Gene 2000 System (Corbett Résearch, Australia) and included initial 15-min denaturation at 95°C and 30 cycles of 15-sec denaturation at 95°C, 15-sec annealing at 50°C, and 15-sec elongation at 72°C. The amplification was monitored by recording the fluorescence of SBG I at the end of each cycle. The postamplification melting curve analysis was used to distinguish the PCR products of blaimp and *blaving* genes according to their melting temperatures (~81°C and ~84°C, respectively).

- Isolates were typed by:
- RAPD with primers M13 and OPB-17 [1];
- MLST [4, http://pubmlst.org/paeruginosa/].

Cluster analysis of combined RAPD profiles was performed using the GelCompar software v.4.1 (Applied Maths, Belgium) with Pearson coefficient and UPGMA algorithm. Clustering of MLST profiles was performed using the online Minimum-spanning tree software (http://pubmlst.org/analysis/).

Structures of MBL-encoding integrons were analyzed by PCR-RFLP and compared to those determined previously [2]. Integrons were amplified in two parts using the primers for internal blavin sequences and conserved sequences at the 5' (intl1) and 3' (*qacEdelat1* or *tniC*) ends (Table 1) and were digested with *Taq* restriction endonuclease.

Table 1. Primers u	sed in this study			
SPrimer	Target	Sequence, 5'-3'	Application	
VIM-Fa	bla _{VIM}	GTTTGGTCGCATATCGC	Real-time PCR detection	
VIM-Ra	bla _{VIM}	TCGTCATGAAAGTGCGT	Real-time PCR detection	
IMP-F	bla _{IMP}	GCTAAAGATACTGAAAAATTAGT	Real-time PCR detection	
IMP-R	bla _{IMP}	TCATTTGTTAATTCAGATGCATA	Real-time PCR detection	
M13		GAGGGTGGCGGTTCT	RAPD typing	
OPB-17		AGGGAACGAG	RAPD typing	
INT/5CS	intl1	CTTCTAGAAAACCGAGGATGC	PCR-RFLP of integrons	
3-CS QAC-EXT	<i>qacE</i> ∆1	AATGCGGATGTTGCGATTAC	PCR-RFLP of integrons	
TniC-rev	tniC	GTGGGCGATCTCTGCGAAG	PCR-RFLP of integrons	
VIM-OUT-F	bla _{VIM}	CTACCCGGAAGCACAGTTCGTC	PCR-RFLP of integrons	
VIM-OUT-R	bla _{VIM}	ACCGGAATTTCGCTGACTGTCG	PCR-RFLP of integrons	

* Primers used for MLST are not shown.

RESULTS AND DISCUSSION

All the isolates collected in 2005-2007 were found to carry the blaving genes.

According to cluster analysis of RAPD profiles, the strains were divided into two clonal groups: one (group A) comprised of 93 isolates from the regions of Lipetsk, N.-Novgorod, Novosibirsk, Smolensk, and Tyumen cities and another (group B) comprised of the remaining 10 isolates from the regions of Smolensk and Voronezh cities (Figure 1).

PCR-RFLP analysis showed that all group A isolates harbored the integron identical to that of the P. aeruginosa strains from Russia [DQ522233], USA [5, AY943084] and Norway [6]. Isolates of the group B contained the integron identical to that of another Russian strain reported earlier [2, DQ522236] (Figure 3).

Nine representative strains (one per city per RAPD group) were analyzed by MLST to confirm their common genetic origin. The strains of clonal group A belonged to ST235 and the strains of cluster B belonged to ST234. The MBL-producing strains of these STs were identified in Russia since 2003 [7].

Interestingly, phylogenetic analysis of MLST data revealed a striking genetic relatedness among the Russian P. aeruginosa strains of major cluster A (ST235) and some of the MBL-producing strains reported from Italy, Greece and Sweden [8]. Despite the apparent diversity in the MBL and integron contents, the latter strains differ from Russian ST235 isolates by no more than one allele in their MLST profiles (Figure 4).

CONCLUSIONS

The results of our study reveal an epidemic population structure of MBL-producing *P. aeruginosa* in Russia with two clones spreading in different hospitals across the country.

Notably, the MLST data analysis suggested a phylogenetic relationship between the Russian and European *P. aeruginosa* strains that contain different MBL genes as parts of different class I integrons which in turn indicate their independent acquisition by isolates of a single genetic lineage.

Figure 1. UPGMA clustering of combined RAPD profiles and genetic characteristics of MBL- producing P. aeruginosa isolates collected in 2005-2007

Institute of Antimicrobial Chemotherapy (IAC), 214019, Smolensk, Russia Phone/Fax: + 7-4812-450602 E-mail: Oksana.Shevchenko@antibiotic.ru http://www.antibiotic.ru

Figure 2. Geographic location of the hospitals where the MBL-producing strains were isolated

- hospitals surveyed in 2002-2004 (RESORT study)
- hospitals surveyed in 2005-2007 (present study)

Restriction profile 1 (strains from cluster A)

Figure 3. Restriction profiles and corresponding structures of variable parts of MBL-coding integrons

Sequence type	Isolate	Year, place of isolation	Allelic profile*	MBL type	e Integron structure
(ST227)	· VR143**	1997, Verona, Italy	38-11-3- 9 -1-2-4	VIM-1	$\langle intI1 bla_{VIM} \rangle aacA4 \rangle aphA15 \rangle aadA1 \rangle qacE\Delta1$
	[.] Mos-3107	2004, Moscow, Russia	38-11-3-13-1-2-4	IMP-1 ^{E59K}	$\langle intI1 \ aadB \rangle \ bla_{IMP} \ cmlA7 \rangle bla_{OXA-21} \ qacE\Delta1$
	Kda-2074	2003, Krasnodar, Russia	38-11-3-13-1-2-4	VIM-2	$\langle intI1 bla_{VIM} \rangle aadA1 \rangle qacE\Delta1 \rangle$
(ST235)	· Mos-3389	2003, Moscow, Russia	38-11-3-13-1-2-4	VIM-2	$\langle intI1 \ aadB \rangle \ bla_{VIM} \ aacA4 \rangle \ qacE\Delta1 \rangle$
	Mos-565	2003, Moscow, Russia	38-11-3-13-1-2-4	VIM-2	<i>int</i> I1 aacA7 <i>bla</i> _{VIM} <i>dhfrB2</i> aacC-A5 <i>tniC</i>
	Tmn-20013	2005, Tyumen, Russia	38-11-3-13-1-2-4	VIM-2	<i>int</i> I1 aacA7 bla _{VIM} dhfrB2 aacC-A5 tniC
(ST220)	- Ps100**	2002, Heraklion, Greece	38-11 -5 -13-1-2-4	VIM-4	$\left< int I1 \right> bla_{VIM} aadA6 \left< qac E\Delta1 \right>$
51230	· PA66**	2001, Stockholm, Sweden	38-11- 5 -13-1-2-4	VIM-4	$\left\langle intI1 \right\rangle bla_{VIM} \left\langle aacA4 \right\rangle bla_{OXA-35} \left\langle qacE\Delta1 \right\rangle$

Figure 4. Minimum-spanning tree showing the close relationship between the three sequence types comprised by MBL-producing strains from Russia and three other European countries

* Alleles that distinguish the ST227 and ST230 from ST235 are shown in bold. ** Data from Giske C.G. et al. [8].

REFERENCES

- 1. Shevchenko O., et al., C2-105 at 45th ICAAC, Washington, 2005.
- 2. Shevchenko O., et al., 1407P at 16th ECCMID, Nice, 2006.
- 3. Stratchounski L., et al., 408/81P at 6th ECC, Paris, 2004 (IJAA, 2004; 24S:S145).
- 4. Curran B., et al., JCM. 2004; 42:5644-49.
- 5. Lolans K., et al., AAC. 2005; 49:3538-40.
- 6. Samuelsen O., et al., P1733_861 at 17th ECCMID/25th ICC, Munich, 2007.